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Abstract 

It is shown that the field theory of massless particles has the internal symmetry group 
G = U(1) ® Aut U(1). The "rs and dual transformations of neutrino and electromagnetic 
fields are particular cases of the transformations of this group. The CP transformations 
of massless field can also be included in the transformations of this group. The following 
formulation of Pryce (1938) theorem is given: Statistical properties of the composite 
photon in the neutrino theory of light are inconsistent with chiral (Ts) symmetry of 
neutrino and electromagnetic fields. 

1. Introduction 

As has been mentioned in the literature (see, for example, Takabayasi, 1959; 
Wheeler, 1960; Pestov, 1974), the 7s transformations of neutrino field 

-~ exp ( i07s)~ ,  ~ ~ exp ( - i 0 7 s ) ~  (1.1) 

and dual transformations of electromagnetic field 

F ~ exp (i0)F, F* -+ exp ( - i 0 )F*  (1.2) 

where F = E + i l l ,  F* = E - ill,  are rather alike. 
In particular, Wheeler (1960) has formulated a question about the reason 

for this analogy. The problem can be solved if the theory of massless particles 
has some internal symmetry group, the particular cases of the transformations 
of which will be (1) and (2) transformations. Of course, the physical reason 
for the existence of such a group must also be clarified. We shall show that 
this group exists and that its appearance is inseparably linked with the intrinsic 
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space-time properties of massless particles: axial symmetry about an axis that 
coincides with the direction of momentum of the particle. 

On the basis of the above-mentioned conclusions the analysis of the neutrino 
theory of hght (or photons) is given. The neutrino theory of light was first 
suggested by de Broglie and was developed further by Jordan and Kronig. 1 
Pryce (1938) pointed out (from the analysis of the properties of the solutions 
of the Dirac equation with m = 0) that the state of a photon in the neutrino 
theory of hght is not invariant under rotation, about the direction of neutrino 
momentum, of a certain vector n that appears in the theory in constructions 
of this state. But the choice of the direction of this vector n must be arbitrary, 
and this fact speaks in favor of inconsistency of the theory. It will be shown 
in our paper that this result (the Pryce theorem) can be formulated as a condi- 
tion of compatibility of  the supposed statistical properties of massless particles 
and internal symmetry of the theory of massless fields. 

2. Symmetry o f  Massless Fields 

We shall define the transformation properties of the operator ff of massless 
fields under a group U(1): 

Uo ff(x)Uo -1 = exp (iOII)~(x) exp (-iO 11) = exp {2iO(j 1 -/2)}if(x) (2.t) 

where if(x) is transformed in accordance with the irreducible representation 
(IR) (fl,f2) of the Lorentz group. The choice of the possible IR of ff is restricted 
by the following condition: 

Jl - h = X (2.2) 

where X is a helicity of a massless particle. 
We have from (2.1) that 

[11, ~(x)] = 2(h -]=)if(x) (2.3) 

where 11 is a generator of transformations of the group U(1). 
The IR (Jl,J2) of the lowest dimensions that satisfy the condition (2.2) are 

the (0,/)  and (j, 0). The fields ~p(x) and X(x), which are transformed according 
to IR (0 , / )  and (j, 0), describe the massless particles with helicity +-½, -+ 1 . . . .  
under j = ~, 1 . . . . .  

There exist some approaches to the formulation of the field theory of mass- 
less particles (see, for example, Dowker, 1973, and literature cited there). For 
our purpose the most convenient is considered to be the formulation that was 
given by Weinberg (1964a, b; 1965). (Naturally, the results achieved in our 
paper take place in other formulations.) 

1 In papers by Pryce (1938) and Berezynsky (1966) one finds the literature on this 
subject. 
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In this case the fields sO(x), g(x) satisfy the following field equations: 

(J /V - J ~)SO(x) =0 

(JJV+J~)X(X) =0 

and canonical commutation relations 
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(2.4) 

[sos(x), d , ( x ' ) ]  + = &~, (x ,  x '), [x~(x),  x+'(x ')1 +_ = Fo~,(x,- x ' ) (2.5) 

where JJ is the matrix in the corresponding representations, F~a', F ~ '  are 
some singular functions, the manifest expressions of which can be found in 
papers by Weinberg (1964b). Signs (-+) in (2.5) mean commutators of anti- 
commutators that depend on statistics which the particles obey and which are 
described by the fields SO(x), X(x). These are only nonvanishing commutators 
(or anticommutators) between s0(x), sO+(x), X(x), X+(X). 

The transformations (2.1) commutate with the transformations of the 
Lorentz group, they are not connected with space-time transformations and are 
canonical transformations, leaving the commutation relations and equations 
of motion to be invariant. 

Combining the fields sO(x) and X(X) [i.e., making the transition to the 
2(2j + 1) formulation], we can put down the transformations (2.1) for the 
representation (0,j) * (], 0)in the following form: 

go xll(x )Uo 1= exp ( 2ijT sO )g~(x ) (2.6) 

where 7s oz = (-so), "~ = (¢x), and I is a single matrix in the corresponding repre- 
sentation. The transformations (2.6) under j = ½, 1 correspond to 7s and dual 
transformations of neutrino and electromagnetic fields. At the same time 
equations (2.4) and the commutation relations (2.5) describe accordingly the 
Weyl equation and the Maxwell equations and the corresponding commutation 
rules. So, the field theory of massless particles has an internal (chiral) symmetry 
group U(1) the particular cases of which are "/s and dual symmetries of 
neutrino and electromagnetic fields. 

Dual symmetry of electromagnetic field is not known as well as 7s symmetry 
of neutrino field and it is reasonable to give here a brief discussion of this 
subject. In contrast to the Lagrangian density of neutrino field the Lagrangian 
density of electromagnetic field is not invariant under the dual transformations 

F2u ~/;;~ cos 20 + Gv/~.v sin 20 (2.7) 

where 

fi'uv = -(i/2)e**~#F~#, ffuv = -Fu~', e,2s4 = 1 
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cuva~ is the completely antisymmetric Ricci tensor. But taking into considera- 
tion the expression of the field tensor Fur through the electromagnetic poten- 
tials A u 

Fur = OuA v - OvA u (2.8) 

it can be seen that the expression Fuj;uv can be cast in the form of divergence 
of  some quantity (see, for example, Landau and Lifschitz, 1968). The factor 
cos 20 of  F~2v does not depend on the coordinates or the variables of  the 
system. In accordance with Noether's theorem (see, for example, Hill, 1951) 
such transformations of  the Lagrangian can be accepted. In this case the law of 
conservation of some quantity can be found. In the case under consideration 
the conserved quantity (dual "current") has the following form (Strazhev, 
1968, 1970; see also Strazhev and Tomilchik, 1973): 

H u = F•vBv - LvAv 
(2.9) 

The unitary operator of  dual transformations (2) has the form (Zwanziger, 
1968; Strazhev, 1968) 

U(O)=exp(iO f [A(x)n(x)-B(x)E(x)]d3x} (2.10) 

where H = V x A, E = - V  x B, and A, B are transversal potentials that describe 
the radiation field. The generator of dual transformations II corresponds to the 
fourth component of  the 17 u and is proportional to the difference between the 
number of  the right and left circularly polarized photons. The dual transforma- 
tions can be rewritten in the following form: 

Uo%go ~ = ~i  cos 0 +~,isinO 
(2.11) 

Uo~iUo 1 = --qbisin 0 +~bicos0 

where i = 1,2;  cb 1 = E, ~1 = H, (b 2 = A, d~ 2 = B. As a particular case of  trans- 
formations (2.11) under 0 = 7r/2 we have the well-known transformations of  
l_armor: E -+ H, H -+ - E. 

3. Physical Meaning of U(1) Symmetry 

In spite of the formal resemblance between the transformations (2.1)and 
the usual phase transformations of  the field operators, there exists an import- 
ant difference between them: The generators of  the phase transformations 
(the gauge transformations of  the second kind) in the quantum theory are 
connected with the generators of  the superselection rules. Their action on the 
field quantities does not depend on the kind of IR of  the Lorentz group in 
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accordance with which they are transformed. But the last property is not the 
property of the generator of chiral (Ts) transformations, as one can see from 
(2.3). 

Besides, we must use the Hermitian operators for the description of the 
purely neutral particles that are not to be the subject of the phase but of 
the chiral transformations. If we express the operators ~(x), X(X) for the case 
of purely neutral fields through the annihilation and creation operators 
A+(X, k), A(X, k) (see Weinberg, 1964, 1965), one can see that the following 
transformation properties of the operators A, A + are in accordance with (2.1): 

UoA(X, k)Uo 1 = exp (-2iXO )A(X, k) 

b~A+(X, k)Uo -1 = exp ( 2iXO )A +(X, k) 
(3.t) 

The helicity states IX, p> have the following transformation rule: 

Uo[ X, p) = exp (2iX0)[Xp) 

II [Xp) = 2XlX, p) 
(3.2) 

It is seen from (3.1) and (3.2) that the chiral (Ts) symmetry reflects the 
impossibility of experimental detection of the relative phase of the left and 
right circularly polarized particles. This impossibility is expressed for the free 
field through the conservation of the difference between the number of the 
right and left circularly polarized particles (the law of chirality conservation). 
For the neutrino field, because of the simple correspondence between 
Majorana and Weyl descriptions of neutrino, this statement is an equivalent 
to the condition that comes from the superselection rule for the lepton 
number .2 For the electromagnetic field it is an equivalent to the statement 
about the impossibility of the detection of the absolute plane of polarization 
of linearly polarized light. 

Till now we have not touched upon the question about the role of condi- 
tion (2.2). But it allows us to give the following physical interpretation of the 
reason of the existence of the group U(1): chiral (Ts) symmetry of the theory 
of massless fields is determined by space-time axial symmetry that is peculiar 
for the massless particle about an axis that coincides with the direction of its 
momentum (see, for example, Berestezky et al., (1970)). 

Actually, in the group language the space-time axial symmetry is expressed 
by the fact that for the description of the massless particles with physically 
meaningful values of helicity we must restrict ourselves to the consideration 
of the factor group of the "little" group of the Lorentz group3: 

U(R) [ X, k) = exp {i® [R] J3} IX, k) = exp (i®(R)X) I X, k) (3.3) 

2 The neutrino can also be viewed as a purely neutral particle (see, for example, Ryan 
and Okubo, 1964; Kobzarev and Okun', 1972). 

3 Wigner (see, for example, 1963) defines the "little" group as the subgroup of the 
Lorentz group consisting of all homogeneous proper Lorentz Transformations RPU 
that do not aRer the momentum of the particle: RPuk ~ = k I~. 
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where J3 is a helicity operator, k u = (0, O, k, ik): 

J3tX, k) = XIX, k) (3.4) 

and the angle ®JR] is some real function of the RUv. 

For infinitesimal RUv we have 

O -~ 0 (3.5) 

and in this case the transformations (3.2) and (3.3) can be identified. If we 
consider only one particle state the operators lI and J3 have the same physical 
meaning. 

Unitary extension of the IR of the factor group into the IR of the proper 
Lorentz group is accompanied by the transition from the states IX, k> to the 
states I X, p>, where pu = L~pv. And it follows from the analysis of Weinberg 
(1964, 1965) that the field operators, which are in mutual correspondence 
with the states I X, p) and satisfy the equations of motion (2.4) and commuta- 
tion relations (2.5), are transformed only in accordance with the IR (/1, h )  of 
the proper Lorentz group, which satisfy the condition (2.2). 

So, the definition of the 3's transformations (2.1) is closely connected with 
the space-time symmetry of the massless particle and, it is possible to say, it 
is caused by it. But at the same time it is necessary to warn against mixing 
transformation (3.2) with (3.3), as sometimes occurs (see, for example, 
Watanabe, 1957; Perkins, 1972). If  the chiral (75)transformations reflect the 
symmetry of polarization space of a massless particle (it is exactly this symmetry 
that is meant in the above-mentioned papers), then the transformations (3.3) 
are induced by the symmetry transformations of the coordinate space. 

4. The Group Structure of  the Field Theory of  Massless Particles 

In the general case by axial symmetry we understand not only rotations 
about an axis but also inversions about the planes that are connected with this 
axis. From this fact it follows that we can discuss the extension of the group 
of 3's transformations U(1). The minimal extension of the abstract group U(1) 
consists of transition into the group G = U(1)(Ds Z2, which is a semisimple 
product of the group U(1) and the group of its outer automorphisms (see, for 
example, Lee and Wick, 1966). The group U(1) has only one outer automorph- 
isms: the transition from the element exp(i0) into the element exp (-iO), which 
is realized by the cyclic group of order 2. For the operator I1 the action of the 
automorphisms is described in the following way: 

I I  ~ [ I  t = C I I I I C ~ I  1 = - - I I  (4.1) 

From (3.2) one can see that the definition of outer automorphisms (4.1)is 
connected with the change of helicity of massless particles. We require that 
field equations (2.4) and commutation relations (2.5) must be invariant under 
the transformations Cn of the field operators s0(x), X(x), which change the 
helicity of massless particles: X -+ -X. This condition is satisfied if we identify 
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the operator Cn with operator CP, 4 wtmre C is charge conjugation, P is space 
inversion. 

As was suggested by Kuo (1971), the outer automorphisms of the internal 
symmetry groups are themselves symmetries. From this point of view the CP 
symmetry of the theory of massless particles is a consequence of the conserva- 
tion of chJrality. In the case of massless particles having only integral values of 
spin, the operator Cri can be represented by the operator of the space inver- 
sion E 

To discuss the relativistic and chiraI invariance from the general point of 
view one must give the transformation properties of the field operators under 
a 11-parameter group that includes the space-time transformations of the 
Puankare group ~ and 7s transformations. In our case, however, it is enough 
to discuss a 7-parameter group that includes, along with the Lorentz group, 
the group of 7s transformations, and further to enlarge it by tile group of 
space-time displacements. The transformations of this 11-parameter group 
are described by the usual formulas for the case of space-time transformations 
[see, for example, Weinberg, 1964,1965 ] and formulas (2.1). The generator 
of chiral transformations 1I is a Casimir operator for the IR of the group 
~ ®  U(1). The invariants of chiral transformations are transformed according 
to symmetrical representations of the Lorentz group. For example, the tensor 
energy-momentum of the electromagnetic field 

Vuu = -½ (Fue~F~v + Fue, ff'ca,) (3.2) 

which is transformed in accordance with IR(1, 1) = (0, 1) ®(1,0) ,  is an 
invariant of dual transformations of the fields E, H. But the electromagnetic 
potentials A u and Ricci tensor Ruu for the gravitation field are not the invari- 
ants of transformations, s The reason for that is that IR 1 (i ,  i )  and (1, 1) in 
these cases do not satisfy the condition (2.2) and because of that are ruled out 
from the number of IR's of the 7-parameter group. The transformations of the 
chiral group U(1) are defined only on the physical states ofmassless particles. 
But in the case ofA u and Ruv one must consider unphysical states of massless 
particles with additional values of helicity. 

5. Neutrino Theory o fL igh t  

From the formal point of view the basic problem of the neutrino theory of 
light consists in the construction from the neutrino operators of the photon 
operators that satisfy the usual commutation relations. With some simplifica- 
tion we deal with the construction of electromagnetic potentials At, from the 
neutrino field operators ft. From the requirement of the right statistical 

4 This can easily be seen by direct examination. 
s In the paper by Ruiner and Fet (1968) the potentialsA~ are treated as dual invariants. 

This incorrect statement is determined by the absence in their approach of the condi- 
tion (2.2). The introduction of this condition provides a basis for the physical inter- 
pretation of the dual transformations. 
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properties for the photon the following expression comes out (Barbour et al., 
1963): 

J u ( k )  = i f(X)~((X - 1)k)g,u~(X, k)dX (5.1) 
0 

where J ~ ( k )  is the potential in the momentum representation, ku is the four 
momentum of the photon, ~ is an operator of a neutrino field, and f(X) is 
some weighted function. 

Neutrino and photon states realize the IR of chiral group U(1) and all the 
relations that connect the neutrino and photon operators must have definite 
transformation properties under chiral transformations. The electromagnetic 
potentials ~¢u(k) are not dual invariants. At the same time the right side of 
the expression (5.1) is an invariant of 7s transformations. Of course, from the 
particular solutions of the Dirac equation with rn = 0 can be built the trans- 
versal four vectors (Berezynsky, 1966). And they will have the correct trans- 
formation properties under dual transformations [see (2.11)] ; i.e., they are 
not invariant under transformations of the group U(1). In this case, however, 
the condition of the relativistic invariance will not be satisfied. So, we can 
formulate the Pryce theorem in the following way: The requirements of the 
correct statistics and the correct transformation properties under transforma- 
tion of the group U(1) of the composite photons are incompatible in the 
neutrino theory of light. In other words we can say that with the satisfaction 
of the requirement of the relativistic and chiral invariance one can build from 
the neutrino only a photon with unphysical longitudinal polarization. 

In a paper by Berezynsky (1966) are formulated in a manifest way the 
principal conditions that are the basis of most papers in the field of the 
neutrino theory of light. On the basis of our approach these conditions can be 
given the following interpretation: The operators of the massless fields have 
the definite transformation rules under chiral (Ts) transformations; there exist 
field operators E, H that are transformed under dual transformations in accord- 
ance with (2.11); a neutrino can be either a fermion or a parafermion particle; 
the commutation relations of the operators of the photon fields are invariants 
under dual transformations. These conditions correspond, respectively, to 
conditions (6), (8), (9), (7), (I0),  and (11) of Berezynsky. The last condition 
is an equivalent to the condition of the pure neutrality of the photon by 
Berezynsky. Berezynsky showed that we do not have a self-consistent neutrino 
theory of light if all these conditions are satisfied. From our point of view, 
that means that the statistical properties of the photon in the neutrino theory 
of light are inconsistent with the chiral (')'s) symmetry of neutrino and electro- 
magnetic fields. 

In papers by Perkins (1972), Green (1972), and Inone et al. (1973) that 
appeared after the paper by Berezynsky (1966) was published, there was made 
an attempt, by some modifications of the commutation relations for the 
electromagnetic field, to get round the difficulties that were mentioned above. 
It is not the aim of the present work to give the detailed analysis of the results 
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of these papers, But we can note that these modifications of the theory lead to 
the dual noninvariant formulations, and from the point of view developed 
above this fact is not satisfactory. 

6. Conclusion 

The interest in the internal symmetries of the theory of massless fields is 
caused by the fact that they defined to such a great extent the formulations 
of the theories that describe the interactions with massless particles. It is 
enough to remember about the role of 7s symmetry in the construction of 
the theory of weak interactions. The consideration of the dual symmetry in 
the presence of charged particles also leads to interesting results (see, for 
example, Strazhev and Tomilchik 1973, 1975). The question about the local 
chiral (Ts) transformations should be paid attention to. In papers by Misner 
and Wheeler (1957) and Collinson and Shaw (1972) the localization of para- 
meter of chiral transformations was used for the geometrization of electro- 
magnetic and neutrino fields. 

This approach was also used for the discussion of 7s symmetry of spinor 
field that describes particles with mass (Hosek, 1972). But the investigations 
in this direction are only a beginning. 

The consideration of the 7s symmetry of massless fields from the general 
point of view may be very interesting in connection with the development of 
the unified theory of weak and electromagnetic interactions (see, for example, 
Bernstein, 1974). But further understanding of this question requires the 
development of the theory of gauge fields in the presence of two types of 
sources (see, for example, Hooft, 1974; Klimo and Dowker, 1973). 

Note Added in Manusoqpt. As I have learned, in the papers of Deser and 
Teitelboim (1976) [Physical Review D, 13, 1592] and Weaver (1976) [Annals 
of Physics, 101, 52] some results of Section 2 of the present paper are 
repeated. 
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